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Abstract

Identifying causal relationships rather than spu-
rious correlations between words and class
labels plays a crucial role in building robust
text classifiers. Previous studies proposed us-
ing causal effects to distinguish words that
are causally related to the sentiment, and then
building robust text classifiers using words with
high causal effects. However, we find that
when a sentence has multiple causally related
words simultaneously, the magnitude of causal
effects will be significantly reduced, which lim-
its the applicability of previous causal effect-
based methods in distinguishing causally re-
lated words from spuriously correlated ones.
To fill this gap, in this paper, we introduce both
the probability of necessity (PN) and probabil-
ity of sufficiency (PS), aiming to answer the
counterfactual question that ‘if a sentence has a
certain sentiment in the presence/absence of a
word, would the sentiment change in the ab-
sence/presence of that word?’. Specifically,
we first derive the identifiability of PN and PS
under different sentiment monotonicities, and
calibrate the estimation of PN and PS via the
estimated average treatment effect. Finally, the
robust text classifier is built by identifying the
words with larger PN and PS as causally related
words, and other words as spuriously correlated
words, based on a contrastive learning approach
name CPNS is proposed to achieve robust sen-
timent classification. Extensive experiments
are conducted on public datasets to validate the
effectiveness of our method.

1 Introduction

Distinguishing between spurious correlations and
causal relationships in linguistics is crucial for
building robust text classifiers (Sridhar et al., 2018;
Roberts et al., 2020; Cheng et al., 2025). For ex-
ample, in the Movies dataset (Maas et al., 2011)
containing IMDB movie reviews, and is found to
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Table 1: The average ATE of positive and negative
sentiment words as treatments on the Kindle dataset,
grouped by the difference in the number of positive and
negative sentiment words excluding the treatment word.

Positive sentiment words Negative sentiment words

# Pos−Neg ATE # Neg−Pos ATE

0 0.547 0 -0.493
1 0.459 1 -0.498
2 0.289 2 -0.325
3 0.239 3 -0.207

have a stronger correlation with positive sentiment
than excellent (Paul, 2017). However, from the se-
mantics, it should be excellent instead of and that
causes a positive sentiment of a movie review, and
the word and itself does not necessarily affect the
review’s sentiment. This motivates the construction
of robust text classifiers by identifying and using
words that are causally related to sentiment rather
than spurious correlated ones (Olteanu et al., 2017).

To identify words that are causally related to the
sentiment, previous methods propose to consider a
specific word as the treatment word and estimate
the causal effect on the class labels, whereas sen-
tences containing the specific word are considered
as belonging to the treatment group and otherwise
to the control group. Causal effect estimation meth-
ods include text or propensity matching (De Choud-
hury et al., 2016; Saha et al., 2019), augmented
inverse propensity weighting (AIPW) (Pham and
Shen, 2017; Sridhar and Getoor, 2019), and rep-
resentation learning-based methods (Veitch et al.,
2020; Wang et al., 2023, 2024). There are also
methods relaxing the common assumptions in com-
plex scenarios (Yang et al., 2024; Li et al., 2024;
Wang et al., 2025b; Zheng et al., 2025).

However, a critical issue when using causal ef-
fects to identify causally related words is that when
multiple causally related words appear in the same



sentence, the causal effect of each causal word on
sentiment drops dramatically, making it difficult
to identify these words. For example, consider
a sentence with positive sentiment – This movie
is excellent and marvelous. When estimating the
causal effect of word excellent on sentiment, the
matched sentences without the word excellent may
be – This movie is [token] and marvelous, in which
[token] is a word other than excellent, and this
sentence may also be recognized as positive senti-
ment. Therefore, the causal effect of word excellent
on the sentence sentiment will be small because
other positive words (e.g., marvelous) also appear
in the sentence. This poses a great challenge to
the effectiveness of previous methods of identify-
ing causally related words by comparing the causal
effects of different words on sentence sentiment.

To empirically reveal the limitations of exploit-
ing average treatment effects (ATEs) to identify
causally related words, we compute the average
ATE of positive and negative sentiment words as
treatments on the Kindle dataset (He and McAuley,
2016). As shown in Table 1, each row shows the
average ATE with a specific gap between the to-
tal positive sentiment words number and the total
negative sentiment words number in the sentence
without computing the treatment word. Despite the
average ATE for positive sentiment words as treat-
ments being positive in each subgroup, we find that
the absolute value of the average ATE decreases
significantly as more positive words are contained
in the sentence, particularly decreasing from 0.547
to 0.239. Similar conclusions also hold for the
cases of negative sentiment words as treatments.
Importantly, this observation reveals an inherent
limitation of using ATE as a proxy to identify the
causally related words, which is irrelevant to ATE
estimation methods. Consequently, if the absolute
value of the ATE for some causally related words as
treatments decreases below a certain threshold, the
causally related words may be incorrectly identi-
fied as spuriously correlated words, thus decreasing
the robustness of the text classifier.

To fill this gap, we aim to answer the counterfac-
tual question, i.e., the highest level in the causal
ladder (Pearl, 2009), ‘if a sentence has a certain
sentiment in the presence/absence of a word, would
the sentiment change in the absence/presence of
that word?’, instead of the interventional question
as in the previous studies, i.e., the second level in
the causal ladder. We introduce both the proba-
bility of necessity (PN) and probability of suffi-

ciency (PS) (Pearl, 2022) and theoretically derive
the identifiability results of PN and PS under differ-
ent sentiment monotonicities. We further propose a
novel robust text classification approach, as shown
in Figure 1, in which the signs of the estimated
ATEs correspond to different sentiment monotonic-
ities, and words with the lowest estimated PN and
PS are considered as spuriously correlated words
and thus removed to achieve robust text classifi-
cation. Extensive experiments are conducted on
three public datasets, demonstrating the superiority
of our proposal on both spurious correlated word
identification and robust text classification. The
contributions can be summarized as follows.

• We are the first work to point out the inade-
quate of ATE or CATE compared with PN and
PS for identifying causally related words and
spuriously correlated words.

• We design a contrastive-learning probability
of necessity and sufficiency (CPNS) to esti-
mate PN and PS in the sentence classification
task and achieve more accurate sentence clas-
sification via better word identification.

• We conduct extensive experiments on 3 public
datasets and 3 backbones, under both cross-
domain and in-domain settings to validate the
effectiveness of our method.

2 Preliminaries

2.1 Robust Text Classification
In this paper, we consider the task of bi-
nary text classification on the dataset D =
{(s1, y1), ..., (sn, yn)}. We ignore subscripts for
simplicity without ambiguity. For each sentence
s consisting of k words, its sentiment label is bi-
nary, i.e., y ∈ {0, 1}, where 0 denotes negative
sentiment and 1 denotes positive sentiment. By
exploiting a feature encoder g : s 7→ x, we first
transform a sentence s into a dense feature vec-
tor x. Finally, we aim to train a binary classifier
fθ : x 7→ {0, 1} parameterized by θ by minimizing
a pre-defined training loss L(D; θ), which predicts
the sentiment label with each feature vector x.

To enhance the robustness and transferability
of the classifier, we consider the more fine-grained
word-level relationships to the sentiment label, aim-
ing to distinguish the causally related words from
the spuriously correlated words. For instance, the
word and is spuriously correlated with the posi-
tive sentiment label in the IMDB movie reviews,



Table 2: The sentences can be divided into eight strata,
with the unobserved values highlighted in red. For each
stratum, counterfactual necessity and sufficiency either
hold (✓), do not hold (×), or unknown (?).

T Y Y (0) Y (1) Necessity Sufficiency

0 0 0 0 ? ×
0 0 0 1 ? ✓
0 1 1 0 ? ✓
0 1 1 1 ? ×

1 0 0 0 × ?
1 0 1 0 ✓ ?
1 1 0 1 ✓ ?
1 1 1 1 × ?

but not in the Kindle book reviews. On the con-
trary, the causally related words have robust rela-
tionships with the class label across different do-
mains, upon which we can build a more robust text
classifier. Let W = {w1, w2, . . . , wA} be all the
words in the training data, we seek to find the words
Wsp = {wsp

1 , wsp
2 , . . . , wsp

B } ⊆ W most likely
to be spuriously correlated to the sentiment label
and Wc = {wc

1, w
c
2, . . . , w

c
C} ⊆ W most likely

to be causally related to the sentiment label. To
achieve robust sentence classification, we remove
Wsp and/orWc from the sentences to train the clas-
sifier, formally f(g(s \Wsp), g(s \Wc), g(s); θ).

2.2 Causal Formulation

We formulate the causally related words identifi-
cation problem using the Neyman-Rubin causal
framework (Imbens and Rubin, 2015). Given a
specific word w, the treatment is set to T = 1 if
w appears in the sentence, otherwise T = 0 if w
does not appear. Let the sentence removing w be
the covariate X , i.e., X = s \ {w} ∈ X . Using
the Neyman-Rubin causal framework, in addition
to the observed sentiment label Y , we denote Y (0)
and Y (1) as the potential outcomes when receiving
treatment T = 0 and T = 1, respectively.

Note that for each sentence one can only observe
one sentiment label Y = (1−T )Y (0)+TY (1), but
not both Y (0) and Y (1), which is also known as
the fundamental problem of causal inference (Hol-
land, 1986; Morgan, 2015). We also assume the
unconfoundedness that (Y (0), Y (1)) ⊥⊥ T | X
and let 0 < P(T = 1|X = x) < 1 for all x ∈ X .
That is, given the sentence removing the treatment
word, the presence or non-presence of the word w
is independent of the potential outcomes, and the

probabilities of presence and non-presence of the
treatment word are both positive.

The most common estimands for measuring the
impact of one specific treatment word on the sen-
timent label are causal effects. Specifically, the
conditional average treatment effect (CATE) with
given covariate X is defined as E(Y (1) − Y (0) |
X), and the average treatment effect (ATE) is de-
fined as E(Y (1) − Y (0)), which is the average
of CATEs over all possible covariate X . Previ-
ous works use the causal effects as auxillary met-
rics to distinguish the causally related words from
spuriously related words (Falavarjani et al., 2017;
Wood-Doughty et al., 2018; Pryzant et al., 2021)–
when a word has a relatively large causal effect on
the class label, it is predicted as a causally related
word. Oppositely, a word strongly correlated with
the class label but not causally related is regarded
as a spuriously correlated word.

3 Proposed Method

3.1 PN and PS
When there are more than one positive or negative
sentiment words in one sentence, the magnitude of
both CATE and ATE will be significantly reduced,
which challenges the causally related words identi-
fication. In this paper, instead of using population-
level causal effect estimation (Wang et al., 2025a;
Zhang et al., 2025; Zhou et al., 2025a), we need to
identify the causally related words, a counterfactual
question on the individual-level (Wu et al., 2025b,a;
Zhou et al., 2025b; Li et al., 2025). Specifically, we
first theoretically derive the identification results
of probability of necessity (PN) and the probabil-
ity of sufficiency (PS) under different sentiment
monotonicities, and further propose a robust text
classification algorithm by accurately estimating
the PN and PS and removing a certain percentage
of words with the lowest estimated PN and PS.

Definition 3.1 (Probability of Necessity (Pearl,
2022)). The probability of necessity is the prob-
ability that sentiment Y = y would not occur in
the absence of word (denoted as T = 0), in the
case where the word and sentiment Y = y did
occur, i.e., P(Y (0) = 1− y | T = 1, Y = y,X).

Definition 3.2 (Probability of Sufficiency (Pearl,
2022)). The probability of sufficiency is the proba-
bility of the capacity of a word to produce sentiment
Y = 1 − y, in the case where the word is absent
(denoted as T = 0) with sentiment Y = y, i.e.,
P(Y (1) = 1− y | T = 0, Y = y,X).



Step1: Choose	the	keyword
by Attention

Step2: Identify the causal word	
by	PN&PS

Step 3: Train sentiment	classifier	
by	Contrastive	learning	

The salads at Carl are so disgusting.

The salads at Carl are so disgusting.

High attention

The salads at Carl are so disgusting.

The salads at Carl are so disgusting.

The salads at Carl are so [Mask].

The salads at [Mask] are so disgusting.

Spurious word Causal wordkeyword keyword

Causal word classifier
The salads at Carl are so disgusting.

PULL distance

PUSH distance

Figure 1: A three-step process consists of selecting keywords, identifying the causal words, and reweighting the
keywords in the training of sentence sentiment classifier.

Algorithm 1: Robust text classification us-
ing words with high probability of necessity
and sufficiency
Input: hyperparameters α, β, k > 0,

training data
D = {(s1, y1), . . . , (sn, yn)};

1 Train an initial classifier f(x; θ) on training
data D;

2 Extract from f(x; θ) the words
{w1, . . . , wM} that are most strongly
associated with each class according to the
initial classifier;

3 for m ∈ {1, . . . ,M} do
4 Estimate P̂(Y | T = 0, X) and

P̂(Y | T = 1, X);
5 Estimate average treatment effect τ̂m of

word wm;
6 if τ̂m ≥ 0 then
7 PNm ←

1 + 1
npos

∑
i:yi=1

P̂(Y=0|T=0,X)−1

P̂(Y=1|T=1,X)
;

8 PSm ←
1 + 1

nneg

∑
i:yi=0

P̂(Y=1|T=1,X)−1

P̂(Y=0|T=0,X)
;

9 else
10 PNm ←

1 + 1
nneg

∑
i:yi=0

P̂(Y=1|T=0,X)−1

P̂(Y=0|T=1,X)
;

11 PSm ←
1 + 1

npos

∑
i:yi=1

P̂(Y=0|T=1,X)−1

P̂(Y=1|T=0,X)
;

12 Rank the words ascendingly by
αPN+ βPS;

13 Classify the words ranked at final K% as
Wc, and others asWsp ;

14 Train a robust f using the loss as Eq (3.3);
Output: robust transferable text classifier

f(x; θ).

3.2 Identification and Estimation

Based on the definition of PN and PS, we can ana-
lyze the necessity and sufficiency of the treatment
word for the sentiment of the sentence, as Table 2
shows. Since PN and PS are at the counterfactual
level, we require one more assumption than stan-
dard causal inference for treatment effects.

Assumption 3.1 (Monotonicity). For each word
as treatment, either the word is positively mono-
tonic to the class label Y (1) ≥ Y (0) or negatively
monotonic Y (1) ≤ Y (0).

We argue that this assumption is not strong since
it only requires the sentiment of a word would be
either positive or negative across different sentence
contexts, but can with varying causal effect values.
For example, the causal effect of the word excellent
to the positive sentiment may change according to
different sentence contexts, but barely be negative.
Next, we derive the identifiability of PN and PS un-
der different sentiment monotonicities as follows.

Theorem 3.1 (Identifiability Under Monotonicity).
Under Assumption 3.1 that Y (1) ≥ Y (0), the PN
and PS are identifiable:

P(Y (0) = 0 | T = 1, Y = 1, X)

=1 +
P(Y = 0 | T = 0, X)− 1

P(Y = 1 | T = 1, X)
,

P(Y (1) = 1 | T = 0, Y = 0, X)

=1 +
P(Y = 1 | T = 1, X)− 1

P(Y = 0 | T = 0, X)
.

Under Assumption 3.1 that Y (1) ≤ Y (0), the PN



and PS are identifiable:

P(Y (0) = 1 | T = 1, Y = 0, X)

= 1 +
P(Y = 1 | T = 0, X)− 1

P(Y = 0 | T = 1, X)
,

P(Y (1) = 0 | T = 0, Y = 1, X)

= 1 +
P(Y = 0 | T = 1, X)− 1

P(Y = 1 | T = 0, X)
.

Proof. Without loss of generality, we only prove
the identification of P(Y (0) = 0 | T = 1, Y =
1, X) under the sentiment monotonicity Y (1) ≥
Y (0) in below:

P(Y (0) = 0 | T = 1, Y = 1, X)

=
P(Y (0) = 0, Y = 1 | T = 1, X)

P(Y = 1 | T = 1, X)

=
P(Y (0) = 0, Y (1) = 1 | T = 1, X)

P(Y = 1 | T = 1, X)

=
P(Y (0) = 0, Y (1) = 1 | X)

P(Y = 1 | T = 1, X)
, (1)

where the first equality holds directly from the defi-
nition of conditional probability, the second equal-
ity is from the consistency assumption, and the
third equality is from the strong ignorability as-
sumption.

For the P(Y (0) = 0, Y (1) = 1 | X) term in the
numerator, we have the following results:

P(Y (0) = 0, Y (1) = 1 | X)

=
(
P(Y (0) = 0, Y (1) = 1 | X) + P(Y (0) = 1, Y (1) = 1 | X)

)
+
(
P(Y (0) = 0, Y (1) = 0 | X) + P(Y (0) = 0, Y (1) = 1 | X)

)
−
(
P(Y (0) = 0, Y (1) = 0 | X) + P(Y (0) = 0, Y (1) = 1 | X)

+P(Y (0) = 1, Y (1) = 0 | X)︸ ︷︷ ︸
equals to 0 because Y (1)≥Y (0)

+P(Y (0) = 1, Y (1) = 1 | X)
)

= P(Y (1) = 1 | X) + P(Y (0) = 0 | X)− 1

= P(Y = 1 | T = 1, X) + P(Y = 0 | T = 0, X)− 1. (2)

Combining Eq. (1) and Eq. (2) identifies PN as:

P(Y (0) = 0 | T = 1, Y = 1, X)

= 1 +
P(Y = 0 | T = 0, X)− 1

P(Y = 1 | T = 1, X)
. (3)

The rest of the identifiability results can be obtained by fol-
lowing a similar argument.

The theoretical results above not only provide
the proof of identifiability for PN and PS, but also
explicitly show plausible estimators with observed
variables. For example, the RHS of Eq. (3) is only
about the distribution of observed data (Y, T,X).

Table 3: Summary statistics of datasets.

Dataset Food IMDB SST-2
Samples 17,273 35,000 67,349
Positive samples 13,618 17,540 37,569
Negative samples 3,656 17,461 29,781

3.3 Robust Sentiment Classifier Training
We exploit the identification results and propose an
algorithm for robust sentiment classifier training as
shown in Algorithm 1. From Theorem 3.1, we note
that the identification results under Y (1) ≤ Y (0)
(negative sentiment words) and Y (1) ≥ Y (0) (pos-
itive sentiment words) are different. This moti-
vates us to first determine whether Y (1) ≥ Y (0)
or Y (1) ≤ Y (0), which is obtained by the sign of
the estimated ATE τ̂m (line 6), then estimate the
PN and PS for each treatment word. To reduce
computational cost, with the training data D, we
first train an initial classifier f(x; θ) to find the can-
didate words {w1, . . . , wM} which are mostly cor-
related with the class label (lines 1 to 2). Then we
take each candidate word wm,m ∈ {1, 2, . . . ,M}
as the treatment word and estimate its PN and
PS (lines 3 to 11). Then we compute the ag-
gregation αPN + βPS for each candidate word
as Agg1, Agg2, . . . , AggM . Denote the upper k%
quantile of these aggregations as Agg(k%), then
causally related words are identified as:

Wc = {wm : m ∈ N, 1 ≤ m ≤M,Aggm ≥ Agg(k%)}.

And the spuriously correlated words are oppositely
identified as the complement set:

Wsp = {wm : m ∈ N, 1 ≤ m ≤M,Aggm < Agg(k%)}.

Let Lce be the cross-entropy loss for the sentence
classification task, and Lcon be the contrastive
loss ensuring that the sentence feature encoding
aligns with causally related and spuriously corre-
lated word identification:

Lcon = sim(g(s), g(s \Wsp))− sim(g(s), g(s \Wc)),

where sim(·, ·) means the cosine similarity. To ob-
tain a robust sentence classifier f(g(·)), we finally
use the following training loss:

L = Lce + λLcon,

where λ > 0 is a hyperparameter.
Notice that the proposed algorithm does not re-

quire accurate estimations of PN, PS, or ATE. For



Table 4: Model Performance in cross-domain scenario. For example, Food→ IMDB means training sentiment
classification model in the Food dataset and evaluating such model in the IMDB dataset.

Backbone Method Accuracy

Food→ IMDB Food→ SST-2 IMDB→ Food IMDB→ SST-2 SST-2→ Food SST-2→ IMDB

BERT

Vanilla 76.8992 ± 0.1397 74.7920 ± 0.5986 84.0926 ± 0.0989 83.8881 ± 0.3337 81.3165 ± 0.2504 83.0483 ± 0.1395

IPS 75.0492 ± 0.1646 75.2224 ± 0.5952 84.5926 ± 0.1228 83.5868 ± 0.4895 79.6684 ± 0.2207 82.0075 ± 0.1421

Matching 76.9100 ± 0.1153 76.3974 ± 0.6026 86.2862 ± 0.1063 85.6815 ± 0.4246 82.7475 ± 0.2751 83.9517 ± 0.1098

DR 77.5504 ± 0.1311 76.0091 ± 0.5712 86.1915 ± 0.1325 85.4389 ± 0.4277 83.8937 ± 0.2582 82.1909 ± 0.1259

TarNet 77.8892 ± 0.1298 77.2310 ± 0.5669 86.3300 ± 0.1678 85.7963 ± 0.4352 82.4399 ± 0.2635 83.4027 ± 0.1326

CPNS 78.3375 ± 0.1251 77.7762 ± 0.5424 86.4512 ± 0.1293 86.7145 ± 0.3221 84.3810 ± 0.2598 84.8827 ± 0.1242

RoBERTa

Vanilla 85.1983 ± 0.1499 80.8895 ± 0.4482 88.8889 ± 0.0934 84.3469 ± 0.2468 85.0392 ± 0.2680 86.5325 ± 0.1875

IPS 85.4346 ± 0.1327 81.3142 ± 0.4886 90.3285 ± 0.1082 85.4532 ± 0.6639 86.0248 ± 0.1937 85.8912 ± 0.1729

Matching 85.2917 ± 0.1234 81.0364 ± 0.5674 90.7609 ± 0.1314 85.7532 ± 0.6639 85.5943 ± 0.2395 86.0975 ± 0.1754

DR 85.3427 ± 0.1416 81.3728 ± 0.5126 90.8327 ± 0.0927 85.3785 ± 0.2451 86.2873 ± 0.1812 86.4731 ± 0.1847

TarNet 85.5827 ± 0.1658 81.8789 ± 0.5966 89.2054 ± 0.1038 86.2841 ± 0.5746 86.1724 ± 0.1863 87.2145 ± 0.1639
CPNS 85.6083 ± 0.1139 81.6786 ± 0.5013 90.7088 ± 0.0830 86.8732 ± 0.6080 89.9024 ± 0.2067 86.6217 ± 0.1671

ALBERT

Vanilla 81.4591 ± 0.4322 81.4431 ± 0.6104 85.2347 ± 0.0877 85.1937 ± 0.5085 83.1485 ± 0.2108 84.6483 ± 0.1391

IPS 80.6608 ± 0.1454 81.5638 ± 0.7462 84.8704 ± 0.2109 87.2066 ± 0.3064 82.6841 ± 0.2253 84.3176 ± 0.1417

Matching 82.3450 ± 0.1952 81.8508 ± 0.5676 81.0421 ± 0.2459 86.5423 ± 0.5586 83.2167 ± 0.2021 84.4798 ± 0.1473

DR 80.9235 ± 0.1762 80.4723 ± 0.7311 86.4012 ± 0.1938 86.8742 ± 0.4661 83.4182 ± 0.1895 84.0061 ± 0.1406

TarNet 83.0824 ± 0.1387 82.3452 ± 0.7705 85.6414 ± 0.2317 86.8192 ± 0.4821 83.4821 ± 0.2014 85.2145 ± 0.1536
CPNS 84.5300 ± 0.1219 82.6858 ± 0.6798 87.7744 ± 0.2413 87.8680 ± 0.4071 83.9764 ± 0.1612 85.1917 ± 0.1172

PN (PS), we only need to make sure the upper k%
words have larger aggregated PN and PS estimates
than the lower 1− k% words. While for ATE, the
only requirement is that the sign of τ̂m is correct.
Not relying on the accurate ATE estimation further
enhances the robustness of our algorithm in addi-
tion to the advantages of the metrics PN and PS
themselves over the widely adopted causal effects.

4 Experiments

In this section, we conduct extensive experiments
on our proposed method, aiming to answer the
following research questions (RQs):

• RQ1: Can CPNS effectively eliminate spuri-
ous correlations and perform better in cross-
domain settings?

• RQ2: Can our method maintain its advantage
in in-domain settings?

• RQ3: Does CPNS outperforms traditional
causal effect estimation methods in identify-
ing causal words?

• RQ4: How sensitive is the model’s perfor-
mance to changes in its hyperparameters?

4.1 Experimental Setup
Datasets. We conduct the sentiment analysis ex-
periments on three widely-used datasets: FineFood
(Food) (McAuley and Leskovec, 2013), IMDB
movie reviews (IMDB) (Maas et al., 2011), and

Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013). The summary statistics are shown
in Table 3, where positive sample means the sen-
tence with positive sentiment, and negative sample
means the sentence with negative sentiment.

Backbone Models. We use standard PLMs includ-
ing BERT (Devlin, 2018), RoBERTa (Liu, 2019),
and ALBERT (Lan, 2019) as the backbone models
for obtaining the embeddings of sentences and top
words. In addition, for our method, we use the
two-layer MLP as the backbone model for learning
a balanced representation.

Baselines. We compare several causal effect esti-
mation methods to achieve robust sentiment classi-
fication. Specifically, IPS (Saha et al., 2019) esti-
mates the causal effects using the conditional prob-
ability of receiving a treatment given confounders
(i.e., sentences), named propensity scores. The
inverse of the propensities are used to reweight
the observed samples, enabling unbiased causal ef-
fect estimation under accurate propensity scores.
DR (Sridhar and Getoor, 2019) models both the
treatment assignment and the outcome. It has the
desirable property that the effect estimate remains
unbiased as long as either the propensity or out-
come model is unbiased. Matching (Wang and
Culotta, 2020) aims to match individuals with simi-
lar features but alternative treatment to impute their
counterfactual outcomes. For example, it groups
sentences based on representations and then esti-
mates the causal effect within each group. Tar-



Table 5: The accuracy performance of the model under
the in-domain scenarios.

Backbone Method Accuracy

Food IMDB SST-2

BERT

Vanilla 95.1397 89.3167 90.5638
± 0.1007 ± 0.1062 ± 0.3618

IPS 95.0212 88.9050 91.1908
± 0.0964 ± 0.1031 ± 0.4217

Matching 95.9865 89.1433 92.0803
± 0.1186 ± 0.0751 ± 0.3443

DR 95.9529 89.2021 92.7632
± 0.0822 ± 0.0712 ± 0.3684

TarNet 95.3283 89.4058 92.1024
± 0.0777 ± 0.0688 ± 0.3729

CPNS 96.2037 89.6367 93.6744
± 0.0968 ± 0.0749 ± 0.3874

RoBERTa

Vanilla 96.1145 89.8967 93.4911
± 0.1399 ± 0.0696 ± 0.2485

IPS 95.8731 89.4278 93.2385
± 0.0925 ± 0.0687 ± 0.3614

Matching 96.3636 90.7992 93.4290
± 0.0731 ± 0.0762 ± 0.3839

DR 96.7013 90.5126 93.4290
± 0.0852 ± 0.0663 ± 0.3839

TarNet 97.0589 90.0200 93.7654
± 0.0635 ± 0.0751 ± 0.3341

CPNS 97.0943 91.6723 94.0890
± 0.0872 ± 0.0634 ± 0.3195

ALBERT

Vanilla 95.7710 88.9367 89.9208
± 0.0900 ± 0.0552 ± 0.3422

IPS 95.5783 89.0858 90.1685
± 0.1088 ± 0.1275 ± 0.3821

Matching 96.0943 88.9017 90.7076
± 0.0768 ± 0.0852 ± 0.3684

DR 96.0427 89.0347 90.8653
± 0.0821 ± 0.0733 ± 0.3957

TarNet 95.8421 89.0925 90.9615
± 0.0762 ± 0.0815 ± 0.3627

CPNS 96.1094 89.4275 91.1047
± 0.0720 ± 0.0727 ± 0.3445

Net (Shalit et al., 2017) learns a balanced represen-
tation to estimate causal effects. We also include a
Vanilla approach, which directly uses the backbone
model without removing spurious correlations.
Implement Details. We utilize a setup of 8
NVIDIA 3090 GPUs, supported by 300GB random
access memory (RAM). It takes approximately 5
hours to train for 10 epochs on the Food dataset.

4.2 Cross-Domain Performance (RQ1)

We conduct experiments across three benchmark
datasets using three widely adopted backbone mod-
els. We compare our method, CPNS, with several
representative causal inference baselines. In par-
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(a) The performance on the Food dataset.
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(b) The performance on the IMDB dataset.
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(c) The performance on the SST-2 dataset.

Figure 2: Comparison between causal effect-based
methods and the CPNS for causal word identification.

ticular, we focus on the cross-domain sentiment
classification setting, where the model is trained
on one dataset (source domain) and evaluated on
another (target domain), a scenario that is more
challenging due to domain shift and spurious cor-
relations. We report classification accuracy on the
target domain as the primary evaluation metric.

As shown in Table 4, all causal baselines gener-
ally outperform the vanilla backbone model, vali-
dating the necessity of identifying causally related
words and removing spuriously correlated ones in
sentiment analysis. Among these baselines, IPS
and Matching are consistently outperformed by
more advanced methods such as DR and TarNet.

Our proposed method CPNS achieves the best
or second-best accuracy in all scenarios, consis-
tently outperforming existing approaches. This
improvement stems from a key limitation in tra-
ditional causal effect estimation: when multiple
sentiment-related words appear in a sentence, the
magnitudes of average treatment effect (ATE) and
conditional average treatment effect (CATE) are of-
ten diluted, which compromises the identification
of truly causal words.
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Figure 3: The variation in the model’s performance under different parameters.

4.3 In-Domain Performance (RQ2)
To evaluate the in-domain effectiveness of CPNS,
we train and test the model on the same dataset
across three domains: Food, IMDB, and SST-2. As
shown in Table 4, CPNS consistently achieves the
highest or competitive accuracy across all back-
bones and datasets.

The superior in-domain performance of CPNS
can be attributed to its better identification of causal
words and its ability to suppress spurious correla-
tions without losing semantically meaningful infor-
mation. Unlike methods that rely purely on global
statistical adjustments, CPNS accurately identifies
causally relevant words using PN and PS, ensuring
that essential sentiment cues are preserved.

In addition, our adoptation of contrastive learn-
ing further strengthens this capability: the model is
trained to down-weight the influence of spuriously
correlated words while simultaneously enhancing
the representations of truly causally related words.
This dual mechanism allows CPNS to eliminate
misleading associations while maintaining or even
reinforcing genuine sentiment signals, which is cru-
cial even when there is no domain shift.

4.4 Causal Word Identification (RQ3)
As shown in Figure 2, CPNS consistently achieves
the highest AUC scores across all datasets and back-
bone architectures, clearly outperforming all base-
lines. In this work, the labels for causal words were
generated by an LLM (GPT-o1)1 and verified man-
ually. For example, on the SST-2 dataset, CPNS
achieves an AUC above 0.8 when using ALBERT
as the backbone, while other methods fall signif-
icantly behind. This demonstrates the superiority
of CPNS in distinguishing causally related words
from spuriously correlated ones.

These results validate the effectiveness of our
CPNS framework for causal word identifica-
tion and highlight its robustness across different

1https://openai.com/

datasets and backbones, making it a more reliable
foundation for real-world sentiment analysis tasks.

4.5 Parameter Sensitivity Analysis (RQ4)

To assess the parameter sensitivity of CPNS, we
conduct experiments using five values for each of
three key hyperparameters, as shown in Figure 3.
Causal Word Ratio k. Keywords are ranked based
on a linear combination of their calculated PN and
PS scores, with the top k% treated as causal. The
results show that performance peaks at k = 20%,
suggesting that a moderate proportion of high-
confidence causal words strikes a good balance be-
tween retaining meaningful information and avoid-
ing spurious correlations.
Coefficient Ratio α/β. The best accuracy is
obtained when PN and PS are equally weighted
(α/β = 1.0). Performance drops slightly as the
ratio deviates from 1.0, indicating that both PN and
PS contribute equally to causal word identification.
Contrastive Loss Coefficient λ. Performance is
maximized at λ = 0.75. Smaller values weaken the
effect of contrastive learning, while larger values
cause the model to overemphasize contrastive loss,
harming classification accuracy.

5 Conclusion

This paper proposes a novel method for distin-
guishing causally related and spuriously correlated
words in sentiment classification by leveraging the
probability of necessity (PN) and the probability
of sufficiency (PS), aiming to eliminate linguis-
tic spurious correlations. Theoretically, we derive
the identifiability of PN and PS under different
sentiment monotonicity assumptions. Empirically,
we conduct extensive experiments across multiple
datasets and backbone models, covering both cross-
domain and in-domain scenarios, to demonstrate
the effectiveness of our method in causal word iden-
tification and sentence sentiment classification.

https://openai.com/


Limitations

One possible limitation of this paper is that the
monotonicity assumption may be violated for a
few sentences with the presence of negation words.
Specifically, we assume that adding positive (nega-
tive) sentiment words will monotonically increase
(decrease) the probability of getting a positive label.
While convenient for identification, this assump-
tion can be violated by natural language constructs.
For example, negation words such as not, never,
and hardly will invert or attenuate sentiment and
break monotonicity. When such non-monotonic ex-
amples arise, the exact identifiability of PN and PS
breaks down, yielding only bounded or partial esti-
mates. Addressing this issue may require relaxing
the monotonicity assumption, for instance via par-
tial monotonic models or by deriving PN/PS under
weaker conditions (e.g., bounded identification).
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